Science Faculty Curriculum Overview:

Key Stage 3:

The aim of the KS3 science curriculum is to encourage students' natural curiosity about the world around them. Through following the curriculum, we aim to inspire students to want to know more. To build an inquisitive mindset that asks "why" and "how" to explain science phenomena. Through experimental design, analysis and evaluation we strive to develop students who can think scientifically and question the validity of data and evidence.

The science curriculum across key stage 3 and 4 is based on students frequently coming across repeating themes. These themes are:

Biology: Living Organisms: Cellular, Living Organisms: Systems, Ecosystems, Natural Cycles, Genetics

Chemistry: Atoms, Chemical Reactions, Chemical Analysis, Environmental Chemistry

Physics: Forces, Energy, Matter, Electricity and Electromagnetism, Space

Every unit has an overall theme, however, due to the nature of science students come across these themes regularly even when it is not the main theme of a unit.

For example, when studying global warming, students will come across the themes of Environmental Chemistry, Chemical Reactions, Energy, Natural Cycles and Ecosystems.

Each year is planned specifically to allow knowledge to be built upon with further layers of complexity, in a manner that will support students long term memory.

For example, in year 7 students learn about energy and the basics of energy transfers, this is essential, threshold knowledge that they will frequently be exposed to throughout the 5 years at Biddick Academy. In year 8, this is focused more on Energy transfers based around heat and fuels, while year 9 this is further expanded into calculating energy and energy changes. When students move into KS4, they will further apply this knowledge to a variety of scenarios including radiation, electrolysis, waves, electromagnets.

Working scientifically is interwoven and built throughout the science curriculum, and are frequently returned too throughout the science curriculum. As students move through the years, the complexity of this knowledge is developed further. Working scientifically can be divided into four themes:

Scientific Attitudes, Experimental skills and investigation, Analysis and Evaluation, Measurements.

All science lessons are structured to begin with intelligent retrieval to assess students prior knowledge, challenge misconceptions and intervene before knowledge is built upon with new knowledge.

To support students in developing their scientific understanding, all lessons are aspirational and aim for students to apply their knowledge to unfamiliar situations. Of these certain tasks are assessed, and staff mark these to provide students with feedback to act upon. The curriculum also utilises peer and self-assessment to ensure students are aware of their successes and how to progress further.

Y7

Term	Unit	Theme	Core knowledge and skills	Prior Knowledge	Key Disciplinary literacy	Big Questions	Assessments
Autumn	Lab Proficiency	Chemical Reactions	Identify hazards in a lab Describe how to reduce risks in a lab Identify parts of the Bunsen Identify types of flame Describe how to light a Bunsen safely Use equipment safely to measure volume, temperature and time	KS2: Taking measurements of time, volume, temperature	 Hazard Risk Irritant Corrosive Toxic Flammable 	How can I be safe in a laboratory? How do I use a Bunsen burner safely? How do I take measurements and use equipment accurately?	Method Writing: How to light a Bunsen burner safely?
	Energy Transfers	Energy	Apply the law of conservation of energy that energy can be created or destroyed to a range of scenarios and contexts Calculate the efficiency of a device using the equation: useful energy output/ overall energy input Calculate efficiency as a % Identify the different energy types -	KS2: Electricity	 Energy Energy stores Energy transfers Efficiency Power Nuclear Gravitational potential Kinetic Joules Dissipated Thermal 	What are the different types of energy? What is the law of energy conservation? How can energy be transferred? What do we mean by waste energy? How does energy transfer from one source to another?	Data Analysis: Bar chart and conclusion: Which fuel has the most energy? Method Writing: How to investigate energy transfers by bouncing a ball?

		electrical, heat/thermal, sound, chemical, light, kinetic, elastic, gravitational potential, nuclear Compare amounts of energy transferred (J, kJ) Convert joules to kilo joules and watts to kilo watts			How do energy transfers relate to electricity?	
Particle model o matter	f Matter	Compare the particle models of solids. Liquids and gases. Draw the particle models of solids, liquids and gases. Explain how energy is integral to substances changing state. Define diffusion and give examples of diffusion occurring. Explain the difference between evaporation, condensation, boiling, freezing. Plot accurate graphs using the key components of a graph.	Y7: Energy transfers Lab Proficiency KS2: Everyday Materials Properties and changes of materials States of matter	 Particle Atom Compressed Density Vibrate Kinetic energy Melting Freezing Evaporation Boiling Condensation Diffusion Displacement Collisions 	What are materials like on the inside? What gives a material its properties? How does a change in temperature affect the energy of the particles? What are the factors that contribute to a good graph? What is diffusion? What is the difference between physical and chemical changes?	Method writing: Melting and boiling ice experiment Writing to compare: Comparing Physical and Chemical changes

Cellular Structure	Living Organisms: Cellular	Carry out safe practicals on density and chemical reactions and diffusion Compare physical and chemical changes in a substance Describe the structure of plant and animal cells Compare the differences between plant and animal cells Describe the structure of specialised cells Explain the adaptations of specialised cells and relate these to their function Describe how to use a microscope to look at cells Explain how a given unicellular organism is adapted to survive Explain the different factors that affect the rate of diffusion Describe the levels of organisation in multicellular organisms	y7: Lab Proficiency Energy Transfers KS2: States of matter Living things and their habitats	Or Cy Ce Nu Ce Ch Va Fie Un Fic Co Ad Or Co Mu Or	ells rganelles rtoplasm ell membrane ucleus ell wall nloroplast acuole agnification ocus eld of view nicellular agellum unction daptation offusion oncentration ulticellular ssue rgan rgan system rganism nromosome ens	What are the building blocks of multicellular organisms? What are the different organelles roles? How are cells adapted to specific functions? How do plants and animals differ on a cellular level? How do we observe cells? How are unicellular cells adapted to survive? How do chemical enter and leave the cell and what factors affect the rate of this?	Method writing: How to prepare a slide of an onion cell and use a microscope to get a clear magnified image
Atoms and Matter	Atoms	Describe how substances change state	K53: Particle model of matter		tom Irticle	What are substances made of?	Writing to Compare:

			Describe what are substances made up of Identify the properties of a solid, liquid and a gas Difference between atoms, elements and compounds Describe the Dalton model of the atom Identify chemical symbols Describe concept of a pure substance Describe how do substances move Describe how to identify a pure substance Identify when to use different separation techniques	Energy Transfers Lab Proficiency KS2: Everyday materials States of matter	 State of Matter Melting Condensing Freezing Boiling Energy Solid Liquid Gas Diffusion Element Compound Density Bond Molecule Dalton Proton Neutron Electron Shell Pure substance Distillation Chromatography Chromatogram Filtration Evaporation Solubility Solution Solute Soluble Insoluble Concentration 	How do particles move? What are materials like inside? What gives a material its property? How to substance change from a solid to a liquid to a gas? What is the difference between a pure substance and a mixture? How are mixtures separated? How do substances move?	compare atoms, elements, compounds and mixtures Method writing: Writing a method to separate sand and salt from seawater
Spring	Speed and Motion	Forces	Describe forces as pushes or pulls, arising from the interaction between two objects Use force arrows in diagrams, adding	KS2: Forces and Magnets Forces	 Speed Force Acceleration Deceleration Relative Motion Non-Contact Force 	What affects the speed of an object? How do forces affect the motion of objects?	Data Analysis: Analysis of measuring forces

forces in one	Contact Force	How can we represent	Writing to
dimension to show	Mass	motion?	describe:
balanced and	 Weight 		Describe
unbalanced forces	Field		motion using
	 Resultant Force 		a distance
Describe non-contact	 Equilibrium 		time graph
forces as gravity forces	 Deformation 		
acting at a distance on	 Friction 		
earth and in space and	 Tension 		
as forces between	 Compression 		
magnets and forces	COp. C33.0		
due to static electricity			
Calculate speed and			
describe its			
quantitative			
relationship between			
distance and time			
(speed = distance /			
time)			
Represent and			
describe a journey on a			
distance – time graph			
distance – time graph			
Describe relative			
motion of trains and			
cars passing each other			
Describe how forces			
are needed to cause			
objects to stop or start			
moving, or to change			
their speed or			
direction of motion			
(qualitative only) and			
that the change is			
dependent on the			

		direction of the force and its size				
Reproduction	Living Organisms: Systems	Explain how new life is created and develops in utero Describe how babies are born Describe and explain the changes in humans during adolescence and puberty Describe the process of menstruation Describe the processes of pollination and fertilisation Compare the structure of wind and insect pollinated flowers Investigate seed dispersal	KS3: Cellular Structure KS2: Living things and their habitats	 Oviduct Ovary/ovaries Uterus Cervix Vagina Urethra Sperm duct Glands Penis Testicles/testes Scrotum Sperm Semen Egg/ovum Gametes Fertilisation Zygote Embryo Gestation Placenta Umbilical cord Amniotic fluid Foetus Oestrogen Testosterone Menstruation Ovulation Contraception Contraceptive Pollination Germination 	What are the main stages in the life cycle of a human? How does the human body change during adolescence? How are new plants made? How do plants move seeds away from the parent plant?	Graph analysis: Describe the effects of drug misuse/ smoking/ alcohol on the development of a foetus using graphical data. Method writing: Describe a method to investigate the effect of size/shape of seed dispersal
Acids and Alkalis	Chemical Reactions	Interpret pH scales to determine substances as acid, alkali, neutral using UI and the pH scale	Y7: Lab Proficiency Particle model of matter Energy Transfers Atoms and matter	 Acid Alkali Base Acidic Particles pH scale 	What is an acid? What is an alkali? What substances are acids and alkalis?	Method writing: How to investigate the effect of temperature on the rate of

			Describe how to carry out a neutralisation reaction Describe methods to determine the effect of different factors on reactions between acid and metals Describe how to collect gas released and how to make salts Describe the reactions of acid + metal		 neutral neutralization universal indicator Alkalinity Acidity Soluble Insoluble 	What is a neutralization reaction? What happens to metals when reacted with acid? What happens to metal carbonates when reacted with acids? What happens to metal oxides when reacted with acids?	reaction between an acid and metals
	Skeletal and Muscular System	Living Organisms: Systems	Describe the structure and function of the skeleton Compare antagonistic muscles Explain how muscles cause the skeleton to move by referring to ligaments, tendons and joints Analyse force applied by muscles	Y7: Cellular Structure KS2: Animals, including humans	 Antagonistic muscles Ligaments Joints Tendons Force Tissue 	How is the skeleton structured? How does the skeleton move? How do antagonistic muscles work?	Writing to Compare: Comparing antagonistic muscle pairs
Summer	Electricity	Electricity and electromagnetism	How circuits can be used to measure current and potential difference.	KS2: Construction of simple circuits Circuit symbols	 Current Ampere Ammeter Potential difference Volts 	What allows electrical energy to be transferred to different devices?	Writing to describe: Describe a model of moving

		Describe and predict the effects of resistance. Describe electric fields, and describe how they are produced.	Identification of electrical conductors and insulators Magnetic forces Magnetic poles Y7: Energy	 Voltmeter Series Parallel Branch Charge Resistance Ohms Positive Negative Electric field 	How do we get different outputs from electrical circuits? How do we generate a static charge?	electric charge.
Periodic Table	Chemical Reactions	Describe and compare chemical and physical changes Describe the structure of the periodic table To predict properties from the periodic table Describe the trends in group 1, 7 and 0 Compare group 1 and group 7 Describe and compare the properties of metal oxides and non-metal oxides Interpret graphical data to make predications Write chemical equations based on reactions	Y7: Lab safety Energy transfers Model of matter Atoms and matter Acids and alkalis KS2: Everyday Materials Properties and changes to materials	 Periodic table Metals Non-metals Metalloids Alkali metal Halogen Noble gases Inert Properties Chemical change Physical change Evaporation Condensation Melting Freezing Hardness Density Conductivity Sonorous Brittle Malleable ductile Reactivity Boiling point Melting point Element Oxidation 	What are chemical changes? What are physical changes? How are chemical and physical changes different? What is the periodic table and how does it tell use properties of materials? What are the trends and patterns in groups 1,7 and 0? What properties are related to metal oxides and non-metal oxides?	Writing to compare: Compare the properties of group 1 (alkali metals) and group 7 (halogens) using data.

Light Waves	Energy	Compare the properties and behaviours of light and sound waves Describe and explain transmission of light waves through a substance Explain the behaviour of different colours of light interacting with different materials	KS2: Reflection of light Vision Shadows Reflection Y7: Energy	 Wave Vacuum Transmission Translucent Transparent Opaque Diffuse Specular Reflection Refraction Photosensitive Absorption 	What is a light wave? Why does light behave differently in different substances? Why does light of different colours display different behaviours?	Writing to explain: Explain the formation of an image by a mirror, and pinhole camera.
Interactions and Interdependencies	Ecosystems	Describe the changes in population if species X went extinct from the food chain Describe and explain the methods and techniques used to increase food yield Evaluate the impact on the environment by farming techniques on food chains Describe the process of eutrophication	Y7: Energy transfers Cellular structure Reproduction KS2: Animals, including humans	 Ecosystem Food chain Food web Habitat Extinction Food security Insecticide Pesticide Herbicide Fungicide Biomagnification Bioaccumulation Eutrophication Energy Yield Trophic level Species Predator Prey Fertilizer Photosynthesis 	How do organisms interact in an ecosystem? How does human activity impact upon food chains?	Writing to Describe: Describe the potential impact of an extinction on other species in a food web

Term	Unit	Theme	Core knowledge and skills	Prior Knowledge	Disciplinary literacy (10)	Big Questions	Assessments
Autumn	Heat Transfers	Energy	Calculate work done Describe how heat energy is transferred by conduction, convection and radiation Describe and investigate insulation on energy loss	Y7: Energy transfers Particle model of matter Light Wave KS2: Properties and changes of materials	 Conduction Convection Radiation Density Currents Insulation Kinetic energy 	How is heat transferred in different materials? Why does heat rise? How does insulation work?	Data Analysis: Draw and describe heating and cooling graph Data Analysis: Analysing data on effects of different insulations on temperature change
	Periodic Table	Matter	Describe and compare chemical and physical changes Describe the structure of the periodic table To predict properties from the periodic table Describe the trends in group 1, 7 and 0 Compare group 1 and group 7 Describe and compare the properties of metal oxides and non-metal oxides Write chemical equations based on reactions	Y7: Lab safety Energy transfers Model of matter Atoms and matter Acids and alkalis KS2: States of matter Everyday materials	 Periodic table Metals Non-metals Metalloids Trend Alkali metal Halogen Group Noble gases Inert Properties Metal oxide Evaporation Condensation Melting Freezing Hardness Density Conductivity Sonorous Brittle Malleable ductile Reactivity 	What are chemical changes? What are physical changes? How are chemical and physical changes different? What is the periodic table and how does it tell use properties of materials? What are the trends and patterns in groups 1,7 and 0? What properties are related to metal oxides and non-metal oxides?	Writing to Compare: Comparing the properties of metals and non-metals Writing to compare: Compare the trends in group 1 and group 7

	Health and diet	Living Organisms:	Explain the process of	Y7	 Boiling point Melting point Element Oxidation Enzymes 	How does breathing	Writing to
		Systems	Explain the adaptations of the lungs for gas exchange Describe the effects of drugs, alcohol and smoking on health Explain why different nutrients are needed for a healthy diet Describe methods to test foods for certain nutrients Describe the digestive system and the roles of different organs and chemicals	Cellular structure Reproduction Energy transfers KS2: Animals, including humans	 Bile Churn Mechanical digestion Chemical digestion Diffusion Alveoli Saliva Hydrochloric acid pH 	work? What is the effect of drugs, alcohol and smoking on health? What is the effect of diet on health? How does the digestive system work?	describe: Describe how air is expelled Writing to describe: Describe the digestion of a meal as it goes through the digestive system
Spring	Types of Chemical Reactions	Chemical Reactions	Describe how atoms reorganise in a chemical reaction Use chemical word equations to explain chemical reactions	Y8: Periodic table Heat Transfers Y7: Energy Transfers Atoms and matter Lab Proficiency Acids and Alkalis Periodic table	 Endothermic Exothermic Conservation of mass Thermal decomposition Combustion Atoms Reactants 	What reactions involve heat? What happens to the atoms in a reaction? What is conservation of mass?	Writing to compare: Compare exothermic and endothermic reactions

		Describe combustion and thermal decomposition Use calculations to demonstrate conservation of mass Describe endothermic and exothermic reactions Describe group 0	KS2: Properties and changes of materials	 Products Energy Bond Compound 	What is an exothermic and endothermic reaction?	
Forces and Pressure	Forces	Compare friction in terms of order of magnitude Calculate weight Describe drag and how streamlining works Describe Hooke's law Calculate moments Describe gas behaviour Describe changes in pressure in fluids Describe and calculate stress in solids	Y8: Health and Diet Heat Transfers Y7: Speed and motion Energy Transfers Particle model of matter KS2: Forces	 Friction Drag Work done Streamline Moments Pressure Pascals Area 	What is friction? What is drag? How can streamlined objects move easier through a substance? What happens to a spring when force is applied? What is a turning force? What is pressure? How is pressure increased/decreased?	Writing to compare: Compare friction in terms of magnitude from given data Writing to explain: Explain the change in gas pressure
Respiration and Photosynthesis	Cycles	Describe aerobic and anaerobic respiration using word equations	Y8: Health and Diet Types of Chemical reactions	RespirationAerobicAnaerobicEthanol	Why do plants need light? What is respiration?	Writing to Compare: Compare Aerobic and

			Compare aerobic and anaerobic reactions Describe how respiration in yeast is used in biotechnology Describe photosynthesis using a word equation Describe the structure and some adaptations of the leaves Describe how to test for starch in a leaf Describe the importance of plant minerals in plant growth	Y7: Energy Transfers Cellular Structure Interactions and Interdependencies Reproduction KS2: Living Things and their Habitat	 Yeast Chloroplast Chlorophyll Endothermic Exothermic 	What is the difference between respiration and breathing? What is the difference in the types of respiration in different organisms? What is photosynthesis? How are plants adapted for photosynthesis?	Anaerobic Respiration? Method Writing: Describe the method for testing for starch in a leaf
Summer	Global Warming and Climate change	Environmental Chemistry	Describe how fossil fuels are formed Describe global warming and climate change Describe the carbon cycle Explain how humans have contributed to global warming	Y8: Periodic table Respiration and Photosynthesis Chemical reactions Heat transfers Y7: Interactions and interdependencies Atoms and matter Periodic table Light waves Energy transfers	 Climate change Long wave radiation Short wave radiation Global warming Photosynthesis Combustion Respiration Decomposition Electrolysis 	What is the natural carbon cycle? How has the burning of fossil fuels added to the carbon cycle? What is global warming? What is the difference between global warming and climate change?	Writing to describe: Describe the Carbon cycle

Electromagnets	Electricity and Magnetism	Describe how humans extract metals from ores Explain the importance of recycling on the carbon cycle Predict and describe the behaviour of permanent magnets Draw and describe magnetic fields Describe and explain the uses of an electromagnets Investigate the factors that affect the strength of electromagnets	Y8: Forces and Pressure Y7: Electricity Speed and motion Forces and pressure KS2: Electricity	 Solenoid Permanent magnet Poles Magnetic field Electromagnet Current Potential difference Current 	How do magnets behave? What does a magnetic field look like? How to make an electromagnet? How are electromagnets useful in everyday life?	Method Writing: Writing a method to investigate a factor on the strength of an electromagnet
Inheritance and variation	Genetics	Describe the process of natural selection Explain the evidence from Darwin/Wallace for natural selection Describe and explain the causes of extinction Describe and explain methods to preserve biodiversity	Y7: Interactions and interdependencies Cellular structure Reproduction Health and Diet KS2: Evolution and Inheritance	 Natural selection Gene D.N.A Chromosome Extinction Biodiversity Gamete Punnet Square Genetic modification Mutation 	How do new species evolve? What evidence is there for natural selection? What causes extinction? How can humans preserve biodiversity?	Writing to describe: Writing to describe natural selection for specific examples Writing to Explain: Determine the probability of inheriting

		Describe how inheritance works Calculate the probability of inheriting certain traits using punnet squares and genetic diagrams Describe and explain the method of genetic modification Evaluate the use of genetic modification			How are traits inherited? What is the structure of genetics? What is the probability of inheriting certain traits? What are the pros and cons of genetic modification	certain genetic traits and explain the results
Light Waves and the EMS	Energy	Compare longitudinal and transverse waves Describe why certain colours are seen Describe the uses of EMS waves Describe the rules for angle of reflection/refraction Measuring angles of reflection/refraction and incidence	Y7: Energy transfers	 Longitudinal Transverse Oscillations Energy transfer Electromagnetic spectrum Wave length Frequency Reflection Refraction Incidence Absorb 	Why are different objects different colours? What is an EM wave? What is reflection/refraction?	Writing to compare: Comparing Longitudinal and transverse waves

Note: Due to continuous curriculum modifications and development the Year 8 curriculum for 2023-2024 will have some changes to teaching order. The Y8 curriculum stated is for current Y8 students 2022-23

Y9

Term	Unit	Theme	Core knowledge and skills	Prior Knowledge	Disciplinary literacy (10)	Big Questions	Assessments
Autumn	Atoms and the Periodic Table	Atoms	Describe the structure of the atom to include the masses and charges of sub atomic particles Describe the electronic configuration of elements (1- 20) Calculate relative atomic masses/% abundance of elements Evaluate techniques for separating mixtures Explain how the periodic table has developed over time Describe, explain and compare the trends in group 0, 1 and group 7	Types of Chemical Reactions Energetics Y7 Lab Proficiency Periodic table Acids and Alkalis Atoms and Matter Particle model of matter	Atoms Element Compound Proton Neutron Electron Subatomic particle Nucleus Orbital Symbol Reactant Product Formula, formulae Isotope Filtration Crystallisation Distillation Evaporation Condensation Chromatogram Solvent Solute Soluble/insoluble Shielding Displacement Halogens Alkali metals Noble Gases Transition Inert	What is an atom? What would you find inside an atom? How has the structure of an atom developed over time? How is isotope different from other elements? Why are elements arranged in the periodic table in groups and columns?	Writing to Compare: Compare models of the atom Writing to describe: Describe the differences between the early periodic tables and the current periodic table

Cell Biology	Living Organisms: Cellular	Make order of magnitude calculations, including the use of standard form. Explain the subcellular structures and their function Describe the differences in magnification between a light microscope and an electron microscope (resolution) Calculate	Y8: Respiration and gas exchange Photosynthesis Inheritance and variation Y7: Cellular structure Reproduction	 Nucleus Cytoplasm Ribosomes Cell membrane Cell wall Mitochondrion Mitochondria Semi-permeable membrane Chloroplasts Vacuole Magnification Focus Resolution Plasmid Prokaryote Eukaryote Flagella 	What are living organisms made from? How do substances move? Why are stem cells important for medical treatments? How has microscopy allowed us to develop an understanding of cells and sub-cellular structures? How do we work out the size of	Writing to Evaluate: Evaluate embryonic and adult stem cells Data Analysis: Calculate the concentratio n using +/- graph
		Calculate magnification including rearrangement of values and express answers in standard form Convert units of measurements Describe the stages of the cell cycle Describe the functions of stem cells in embryos and meristems in plants		 Flagella Flagellum Xylem Phloem Root hair cell Chromosomes Mitosis Stem cell Meristem Concentration gradient Osmosis Active transport Semi/Partially permeable membra ne Turgid Flaccid 	the size of microorganism and cells?	

Energy and Calculations	Energy	Evaluate the use of stem cells as a treatment for disease Describe how substances move through diffusion, osmosis and AT Explain factors which affect the rate of diffusion Compare light and electron microscopes. Identify and describe energy transfers and how to minimize wasted energy. Calculating changes in an arm (ME, CRE)	Y8: Energy in Everyday Life Sound waves Magnets and Electromagnets Energetics	 Conservation Gravitational Electromagnetic Elastic Kinetic Sound 	What does energy conservation mean? How is energy conserved?	Writing to Describe: Describe the energy transfers as an object falls
		in energy (KE, GPE, EPE, heat/ thermal energy) Define and calculate power Define and calculate efficiency, use efficiency as a measure of effectiveness of a device or system.	Photosynthesis Respiration and gas exchange Forces and pressure Y7: Speed and motion Energy transfers Light waves Particle model of matter Electrical circuits	 Light Nuclear Chemical Thermal Potential Energy Work done Efficiency Power Weight Speed/ velocity Greenhouse effect 	How are energy transfers calculated? Which energy source is the best and why?	such as a skier or an object being dropped Writing to evaluate: Compare and evaluate energy sources in different scenarios

predict the impact of energy generation changes To calculate values using multistep equations Spring Bonding and Properties Bonding and Properties Describing ionic bonds Describing ionic bonds Describing ionic bonds Describing and explaining properties of ionic substances Describes and be formed? Describe ion bonds Describe ion bonds Positive atoms bonding change the type of bond formed? Describe ion bonds Properties Positive atoms bonding change the type of bond formed? Describe ion bonds Positive atoms bonding change the type of bond formed? Protons Electrons How do properties of the substance change of diamond of diamond of diamond. Regular Lattice	Spring	_	Atoms	energy generation changes To calculate values using multistep equations Drawing ions from atoms Drawing ionic bonds Describing ionic bonds Describing and explaining properties of ionic substances Drawing covalent bonds Describing covalent bonds Comparing ionic and	Energy Atomic structure and the periodic table Y8: Types of chemical reactions Y7: Atoms and matter	 Evaporation Condensing Atom Ion Positive Negative Transfer Protons Electrons Regular Lattice Electrostatic forces of attraction Intermolecular forces Covalent Delocalised electrons 	types of bond that can be formed? How does the type of atoms bonding change the type of bond formed? How do properties of the substance change with different types of bond? How does reactivity change within	Describe: Describe ionic bonds Writing to Compare: Compare the
---	--------	---	-------	--	---	---	---	--

		Describing and				
		explaining properties				
		of simple and giant covalent molecules				
		covalent molecules				
		Describe the				
		different structures				
		of giant covalent				
		molecules				
		Describe the				
		structure of metallic				
		bonds				
		Describe and explain				
		the properties of				
		metals				
		Describe and explain				
		the properties of				
		alloys				
		,				
Organisation:	Living	State the organs of	Y9 :	Enzyme	How is the digestive	Method
Digestive System	Organisms:	the digestive system	Cell Biology	Active site	system organised?	Writing: How
	Systems	December 11	Energy	Substrate		to test cows
		Describe the functions of the	Y8:	Denature Protein	How can nutrients be detected in food?	milk for different
		organs of the	Y8: Diet and Nutrition	Lipids	uetected in 1000?	nutrients
		digestive system	Diet and Nathtion	Carbohydrates	Where are enzymes	natrients
		digestive system	Y7:	Starch	produced and where	Writing to
		Investigate how to	Cellular structure	Amino acids	do they work?	describe:
		test for the presence		Fatty Acids	*	Describe how
		of different nutrients		Glycerol		fat is digested
		in food		Glucose		

			Describe and explain the function of enzymes Describe and explain factors that affect enzymes Evaluate the adaptations of the small intestine to increasing the rate of diffusion/active transport in the absorption of nutrients Investigate the rate of enzyme activity with differing pH Describe and explain the function of bile Compare the action of enzymes with and without the presence of bile		Protease Amylase Lipase Villi Microvilli Neutralisation pH Emulsification Soluble Insoluble	What factors affect how an enzyme works?	
Summer	Particle Model	Matter	Describe and draw the arrangements of the particles within the three most common states of matter	Y9: Energy Atomic structure and the periodic table Bonding and properties Y8:	 Density Mass Volume Displacement Zero error Systematic error Random error Parallax error 	How does temperature affect matter? Why do different states of matter heat up at different rates?	Method Writing: Writing a method to determine the density of a regular, and

Organisation:	Living	Calculate the density of regular and irregular objects. Describe how to determine volume and mass for regular and irregular objects Describe and explain why changes of state occur Describe and explains changes to kinetic and potential energy stored within material depending on the state of matter and the temperature. Calculate and determine the energy required for state changes (specific latent heat) and temperature changes (specific heat capacity) Describe and explain	Y7: Atoms and matter Periodic table Energy transfers Particle model of matter	 Potential energy Internal energy Convection current Fluid Molecule Pressure Collision Force Specific heat capacity Specific latent heat (SLH) SLH of vaporisation SLH of fusion • Exothermic	Why do we use water in most methods of heat transfer? How do we determine density of regular and irregular objects? Why can a gas be compressed but a solid and a liquid cannot? How are blood vessels	writing to explain: Explain changes in pressure as temperature is increased
Respiratory and Circulatory System	Organisms: systems	the adaptations of veins, arteries and capillaries	Cell Biology Organisation: Digestive system Energy	 Energy Respiration Aerobic Mitochondria Anaerobic 	structured to their function?	Evaluate: Evaluate the lifestyle and medical causes of

	parts of the heart and the direction of blood flow Describe the composition of the blood and the functions of the different parts Explain health and lifestyle factors that increase the risk of coronary heart disease Describe and explain the consequences of CHD and the treatments for this Describe and explain the adaptations of the lungs Compare aerobic and anaerobic respiration in different organisms Explain factors that can effect metabolism and describe metabolic reactions	Photosynthesis Diet and nutrition Respiration and Gas exchange Inheritance and variation Energy in everyday life Y7: Energy transfers Reproduction Skeletal and muscular Cellular structure	 Oxidation Oxygen debt Fermentation Organelles Metabolism Enzyme Pressure Oxygenated Deoxygenated Cholesterol Pacemaker Anti-coagulant 	composition of the blood? How is the heart adapted to its function? What factors contribute to CHD? What treatments exist for different heart illnesses? How are the lungs structured? How does heart rate and breathing rate change during exercise and why? What is the difference in respiration between animals, plants and yeast?	Heart Disease
--	---	--	--	--	---------------

	Explain changes that		
	occur during		
	exercise		